| Peer-Reviewed

Effect of Complexation of Humic Acid with Iron Minerals on Microbial Degradation of Sulfamethoxazole

Received: 28 October 2019     Published: 3 December 2019
Views:       Downloads:
Abstract

Microbial Shewanella oneidensis MR-1 can degrade sulfamethoxazole (SMX) and act as a microorganism with strong electron donating properties, which can accelerate the degradation of SMX when it cooperates with electronic shuttle and disproportionated iron. By adding different TOC concentrations, different molecular weight humic acids, and magnetite and hematite suspensions, the optimal system growth conditions, ie, the temperature of 30°C, pH = 7, the TOC concentration, The effect of humic acid with different molecular weights and the addition and synergistic addition of different iron minerals on the degradation of SMX by Shewanella oneidensis MR-1. The study found that humic acid stock solution, small molecule humic acid, iron mineral and both of them will accelerate the degradation of SMX by microbial MR-1. The concentration of small molecule humic acid will degrade SMX by Shewanella oneidensis MR-1. The effect of the humic acid is greater than that of the original solution. The addition of magnetite and hematite suspension to the reactor alone promotes the degradation of SMX by Shewanella oneidensis MR-1, and the addition of humic acid will improve the degradation rate of SMX.

Published in Science Discovery (Volume 7, Issue 5)
DOI 10.11648/j.sd.20190705.22
Page(s) 330-336
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2019. Published by Science Publishing Group

Keywords

Shewanella oneidensis MR-1, Sulfamethoxazole, Humic Acid, Iron Mineral

References
[1] Schlüsener, M. P.; Kai, B. J. E. P., Persistence of antibiotics such as macrolides, tiamulin and salinomycin in soil. 2006, 143 (3), 565-571.
[2] Klaus, K. J. C., Antibiotics in the aquatic environment--a review--part II. 2009, 75 (4), 417-434.
[3] Sheng, W.; Wang, F.; Chen, Y.; Tao, L.; Zhang, S. J. E. S.; Research, P., The joint toxicity effect of five antibiotics and dibutyl phthalate to luminescent bacteria ( Vibrio fischeri ). 2018, (12), 1-8.
[4] Thiele, S. J. J. o. P. N.; Bodenkunde, S. S. Z. f. P. u., Adsorption of the antibiotic pharmaceutical compound sulfapyridine by a long-term differently fertilized loess Chernozem. 2015, 163 (6), 589-594.
[5] Kades, E. J. N. U. L. R., Preserving a Precious Resource: Rationalizing the Use of Antibiotics. 2005, 99 (2), 611-675.
[6] Jie, H.; Weining, W.; Daqing, M.; Chong, W.; Quanhua, M.; Songyan, Q.; Yi, L. J. E. S.; International, P. R., Occurrence and distribution of sulfonamides, tetracyclines, quinolones, macrolides, and nitrofurans in livestock manure and amended soils of Northern China. 2015, 22 (6), 4545.
[7] 李彦文;莫测辉;赵娜;张瑞京;分析化学,亦.J.,高效液相色谱法测定水和土壤中磺胺类抗生素.2008, 36 (7), 954-958.
[8] Ji, X.; Shen, Q.; Liu, F.; Ma, J.; Xu, G.; Wang, Y.; Wu, M. J. J. o. H. M., Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. 2012, 235-236 (20), 178-185.
[9] Mao, F.; Liu, X.; Wu, K.; Zhou, C.; Si, Y. J. B., Biodegradation of sulfonamides by Shewanella oneidensis MR-1 and Shewanella sp. strain MR-4. 2018, 29 (11), 1-12.
[10] Reis, P. J. M.; Reis, A. C.; Ricken, B.; Kolvenbach, B. A.; Manaia, C. M.; Corvini, P. F. X.; Nunes, O. C. J. J. o. H. M., Biodegradation of sulfamethoxazole and other sulfonamides by Achromobacter denitrificans PR1. 2014, 280, 741-749.
[11] Jiang, B.; Li, A.; Cui, D.; Cai, R.; Ma, F.; Wang, Y. J. A. M.; Biotechnology, Biodegradation and metabolic pathway of sulfamethoxazole by Pseudomonas psychrophila HA-4, a newly isolated cold-adapted sulfamethoxazole-degrading bacterium. 2014, 98 (10), 4671-4681.
[12] 异化铁还原对Shewanella oneidensis MR-1降解磺胺类抗生素和还原Cr(Ⅵ)的影响. 安徽农业大学, 2018.
[13] Density and Distribution of Amphipods in Oneida Lake, New York, after the Introduction of the Exotic Amphipod. 2011.
[14] Huang, D. Y.; Zhuang, L.; Cao, W. D.; Xu, W.; Zhou, S. G.; Li, F. B. J. J. o. S.; Jss, S., Comparison of dissolved organic matter from sewage sludge and sludge compost as electron shuttles for enhancing Fe(III) bioreduction. 2010, 10 (4), 722-729.
[15] Stevenson, F. J. J. S. S., Humus chemistry : genesis, composition, reactions. 1982, 135 (2), 129-130.
[16] Cervantes, F. J.; Bok, F. A. M., De; Tuan, D. D.; Stams, A. J. M.; Gatze, L.; Field, J. A., %J Environmental Microbiology, Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic microorganisms. 2010, 4 (1), 51-57.
[17] Keller, J. K.; Weisenhorn, P. B.; Megonigal, J. P. J. S. B.; Biochemistry, Humic acids as electron acceptors in wetland decomposition. 2009, 41 (7), 1518-1522.
[18] Lovley, D. R.; Fraga, J. L.; Blunt-Harris, E. L.; Hayes, L. A.; Coates, J. D. J. A. H. E. H., Humic Substances as a Mediator for Microbially Catalyzed Metal Reduction. 2010, 26 (3), 152-157.
[19] 钟振兴; 张远; 徐建; 郭昌胜; 李蕾; 陈玉成; ZHONGZhen-xing; ZHANGYuan; XUJian; 农业环境科学学报, G.-s. J., 磺胺甲恶唑在沉积物中的降解行为研究. 2012, 31 (4), 819-825.
[20] Groh, J. L.; Luo, Q.; Ballard, J. D.; Krumholz, L. R. J. A.; Microbiology, E., A Method Adapting Microarray Technology for Signature-Tagged Mutagenesis of Desulfovibrio desulfuricans G20 and Shewanella oneidensis MR-1 in Anaerobic Sediment Survival Experiments. 71 (11), 7064-7074.
[21] Liu, X.; Lu, S.; Ying, L.; Wei, M.; Zheng, B. J. R. A., Adsorption of sulfamethoxazole (SMZ) and ciprofloxacin (CIP) by humic acid (HA): Characteristics and mechanism. 2017, 7 (80), 50449-50458.
[22] Yang, Z.; Kappler, A.; Jiang, J. J. E. S.; Technology, Reducing Capacities and Distribution of Redox-Active Functional Groups in Low Molecular Weight Fractions of Humic Acids. 2016, 50 (22), acs.est.6b02645.
[23] 有机质各组分还原水铁矿及相关官能团的研究. 北京林业大学, 2016.
[24] 铁氧化物及其腐殖质复合体对六价铬的吸附研究. 湖南大学, 2016.
[25] 刘小红. 异化铁还原对Shewanella oneidensis MR-1降解磺胺类抗生素和还原Cr(Ⅵ)的影响. 安徽农业大学.
[26] Shewanella oneidensis MR-1对铁氧化物的还原与汞的生物甲基化研究. 安徽农业大学, 2014.
[27] Myers, C. R.; Myers, J. M., Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. 1977, 179 (4), 1143-52.
[28] Beliaev, A. S.; Saffarini, D. A., Shewanella putrefaciens mtrB Encodes an Outer Membrane Protein Required for Fe(III) and Mn(IV) Reduction. 1998, 180 (23), 6292.
[29] 姜杰; 杨浈; 任谦; 环境化学, 孙. J., 土壤腐殖质氧化还原电位及其相应电子转移能力分布. 2015, (2), 219-224.
[30] Neyens, E.; Baeyens, J., A review of classic Fenton's peroxidation as an advanced oxidation technique. 2003, 98 (1), 33-50.
Cite This Article
  • APA Style

    Chen Xueyan, Jiang Jie. (2019). Effect of Complexation of Humic Acid with Iron Minerals on Microbial Degradation of Sulfamethoxazole. Science Discovery, 7(5), 330-336. https://doi.org/10.11648/j.sd.20190705.22

    Copy | Download

    ACS Style

    Chen Xueyan; Jiang Jie. Effect of Complexation of Humic Acid with Iron Minerals on Microbial Degradation of Sulfamethoxazole. Sci. Discov. 2019, 7(5), 330-336. doi: 10.11648/j.sd.20190705.22

    Copy | Download

    AMA Style

    Chen Xueyan, Jiang Jie. Effect of Complexation of Humic Acid with Iron Minerals on Microbial Degradation of Sulfamethoxazole. Sci Discov. 2019;7(5):330-336. doi: 10.11648/j.sd.20190705.22

    Copy | Download

  • @article{10.11648/j.sd.20190705.22,
      author = {Chen Xueyan and Jiang Jie},
      title = {Effect of Complexation of Humic Acid with Iron Minerals on Microbial Degradation of Sulfamethoxazole},
      journal = {Science Discovery},
      volume = {7},
      number = {5},
      pages = {330-336},
      doi = {10.11648/j.sd.20190705.22},
      url = {https://doi.org/10.11648/j.sd.20190705.22},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sd.20190705.22},
      abstract = {Microbial Shewanella oneidensis MR-1 can degrade sulfamethoxazole (SMX) and act as a microorganism with strong electron donating properties, which can accelerate the degradation of SMX when it cooperates with electronic shuttle and disproportionated iron. By adding different TOC concentrations, different molecular weight humic acids, and magnetite and hematite suspensions, the optimal system growth conditions, ie, the temperature of 30°C, pH = 7, the TOC concentration, The effect of humic acid with different molecular weights and the addition and synergistic addition of different iron minerals on the degradation of SMX by Shewanella oneidensis MR-1. The study found that humic acid stock solution, small molecule humic acid, iron mineral and both of them will accelerate the degradation of SMX by microbial MR-1. The concentration of small molecule humic acid will degrade SMX by Shewanella oneidensis MR-1. The effect of the humic acid is greater than that of the original solution. The addition of magnetite and hematite suspension to the reactor alone promotes the degradation of SMX by Shewanella oneidensis MR-1, and the addition of humic acid will improve the degradation rate of SMX.},
     year = {2019}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Effect of Complexation of Humic Acid with Iron Minerals on Microbial Degradation of Sulfamethoxazole
    AU  - Chen Xueyan
    AU  - Jiang Jie
    Y1  - 2019/12/03
    PY  - 2019
    N1  - https://doi.org/10.11648/j.sd.20190705.22
    DO  - 10.11648/j.sd.20190705.22
    T2  - Science Discovery
    JF  - Science Discovery
    JO  - Science Discovery
    SP  - 330
    EP  - 336
    PB  - Science Publishing Group
    SN  - 2331-0650
    UR  - https://doi.org/10.11648/j.sd.20190705.22
    AB  - Microbial Shewanella oneidensis MR-1 can degrade sulfamethoxazole (SMX) and act as a microorganism with strong electron donating properties, which can accelerate the degradation of SMX when it cooperates with electronic shuttle and disproportionated iron. By adding different TOC concentrations, different molecular weight humic acids, and magnetite and hematite suspensions, the optimal system growth conditions, ie, the temperature of 30°C, pH = 7, the TOC concentration, The effect of humic acid with different molecular weights and the addition and synergistic addition of different iron minerals on the degradation of SMX by Shewanella oneidensis MR-1. The study found that humic acid stock solution, small molecule humic acid, iron mineral and both of them will accelerate the degradation of SMX by microbial MR-1. The concentration of small molecule humic acid will degrade SMX by Shewanella oneidensis MR-1. The effect of the humic acid is greater than that of the original solution. The addition of magnetite and hematite suspension to the reactor alone promotes the degradation of SMX by Shewanella oneidensis MR-1, and the addition of humic acid will improve the degradation rate of SMX.
    VL  - 7
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China

  • College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China

  • Sections